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Contributions of this Study

Among the new significant aspects of the present work are (i) the

treatment of the far-field boundary, (ii) the use of C-grid topology, with

the branch-cut singularity treated analytically, (iii) evaluation of the

effect of the envelope of prevailing initial states and, finally," (iv) the

ability to employ streakline/pathline 'visualization' to probe the unsteady

features prevailing in vortex-dominated flows. The far-field boundary is

placed at infinity, using appropriate grid stretching. This contributes to

the accuracy of the solutions, but raised a number of important issues which

needed to be resolved; this includes determining the equivalent

time-dependent circulation for the pitching airfoil. A secondary counter-

clockwise vortex erupts from within the boundary layer and immediately

pinches off the energetic leading-edge shear layer which then, through

hydrodynamic instability, rolls up into the dynamic stall vortex. The

streakllne/pathline visualization serves to provide information for insight

into the physics of the unsteady separated flow.

This research is supported, in part, by AFOSR Grants (Nos. 87-0074 and

90-0249), with supercomputer resources being provided by the Ohio

Supercomputer Center.
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Physical Characteristics and Background

Specifically, the large amptitude rapid pitching motion associated with

the initiation of a high angle-of-attack maneuver typically leads to the

generation of a dynamic stall vortex whose evolution results in large

transient lift, drag and moment that can, for short periods of time, produce

loadings significantly larger than those expected during either steady, or

quasl-steady flight. Indeed, the successful completion of an abrupt,

drastic maneuver can depend upon the ability of holding the dynamic stall

vortices in place, at least for the duration of the maneuver, and

subsequently bleeding the excess accumulated vorticity in a controlled

manner into the wake. Abrupt shedding of large amounts of locally

concentrated vorticity can so rapidly alter the llft distribution on a body

that a tumbling loss-of-control incident can occur, as the associated rapid

changes in moment distribution cannot be tolerated.

Recently, Carr (1988) has comprehensively reviewed the literature on

the dynamic stall phenomenon and has also articulated the effect of key

parameters on this phenomenon. Helin (1989) has also highlighted recent

advances in the field, while stressing the importance of unsteady

aerodynamics for highly maneuverable and agile aircraft. In addition, he

has raised the important issue of the effect of flow separation on the

formation of the energetic dynamic-stall vortex. These two reviews

adequately point out some of the unresolved issues associated with the

problem of dynamic stall.

On the Analysis of Dynamic Stall

The unsteady Navier-Stokes analysis of K. Ghia, Osswald and Ghia (1985)

and Osswald, K. Ghia and U. Ghia (1986) is modified to permit arbitrary

three degree-of-freedom maneuvers, using body-fixed coordinates and a C-grid
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topology. This formulation not only permits pitching motions, but also

plunging and in-plane accelerating or decelerating motions; typically, the

airfoil is pitched about the quarter-chord axis. The problem is formulated

using vorticity and stream function as dependent variables in a non-uslng

body-fixed reference frame in generalized coordinates. This formulation

offers the important advantage over the primitive-variable formulation that

the form of the governing equations in inertial and non-lnertial reference

frames is identical. The far-field boundaries are located at true infinity

for this subsonic flow with its fully elliptic nature. The conformal

mapping techniques used lead to analytical determination of the

corresponding inviscid flow; this inviscid flow constitutes the true far-

field boundary condition; by contrast, the studies of Visbal and Shang

(1988) and Ekaterinarls (1989) place the far-field boundary at a finite

distance from the airfoil, and employ free-stream conditions on the upstream

boundary and zero streamwise gradients downstream. The present study uses

an analytically determined clustered conformal grid, thereby avoiding

numerical error in the computation of the metrics. The C-grid topology

employed introduces a singularity at the trailing edge (TE) and all along

the branch cut. For the latter, this singularity is treated using the

method of analytic continuation, as developed by Osswald, K. Ghia and U.

Ghia (1985). The conditions of zero slip and zero normal velocity at the

surface of the airfoil are implemented appropriately in terms of the stream

function and vorticity. At the TE, the singularity in the grid does play a

role in determination of the stream function, which is obtained by

satisfying the Kutta condition. The vorticity at the TE is determined using

the analysis of Osswald, K. Ghia and U. Ghia (1989). The direct numerical

simulation (DNS) methodology developed by the authors is used to solve the
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vorticity transport and stream function equations. Central differences are

used for all spatial derivatives and no artificial dissipation is added

explicitly.

Results and Discussion

In the present study, simulations are carried out for a NACA 0015

airfoil undergoing constant @-pitch-up motion. Two flow configurations are

attempted and they are for Re = 103 and 104 . Configuration I, with the

lower Re - 103, is used in the development phase, since it permits the use

of a smaller grid (274, 76) of which 114 grid points are placed on the body.

On the other hand, configuration II, with Re = 104, is used to compare the

results of the experiments of Walker, Helin and Strickland (1985) who

considered Re - 45000. This latter configuration was run using a (444,101)

grid with 204 grid points on the body; the size of the grid was selected

based on the results of Visbal and Shang (1988) who had carried out a grid

study and selected this size. In addition, the same constant O-pitch-up

motion as used by them is also implemented here and corresponds to

nondimensional pitch rate _0= 0.2 with nondimensional acceleration time

to - 0.5, and pivot axis location measured from airfoil leading edge

x 0- 0.25.

Results of configuration I, in Fig. i, show that the dynamic stall

vortex with its clockwise spinning fluid evolves as the shear layer from the

leading edge is pushed away by the counterclockwise spinning vortex close to

the body surface and subsequently the shear layer rolls up and forms a

dynamic stall vortex. It appears that the eruption of counterclockwise

spinning vortex from within the boundary layer is important to formation of

the dynamic stall vortex near the leading edge.
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o
Results for configuration II, in Fig. 2, show that 8 = 0 run exhibits

unsteady results as opposed to the steady-state results obtained by Visbal

and Shang. Their steady-state solutions could strictly be a consequence of

the use of both explicit as well as implicit smoothing, i.e., artificial

viscosity, to maintain stability in their numerical calculations, which

employed the method of Beam and Warming. Present results for configuration

II, although not depicted here, show that there are grid related

oscillations near the leading edge in the vorticity contours and grid

structure and perhaps its density needs to be altered before generating new

results and analyzing them. Still, in this case, also the secondary

counterclockwise vortex erupts from within the boundary layer on the surface

to form the dynamic stall vortex. Unlike wind-tunnel tests, the numerical,

experiment in the present study computes the vortlcity field directly. By

evaluating various individual terms in the vorticity- transport equation, it

is possible to examine vorticity accumulation and generation at the body

surface as well as in the flux from the boundary to reveal the underlying

mechanism and the role of unsteady separation on the evolution of the stall

vortex. This is possible once a comprehensive set of results are obtained.

In summarizing, the constant _-pitch-up experiment of Walker et al.

(1985) is simulated using direct mmlerical simulation and an unsteady NS

analysis. The preliminary results obtained so far provide the flow

structure and the evidence that eruption of secondary counterclockwise

vortex near the quarter chord point triggers the formation of the dynamic

stall vortex. However, additional results are essential to obtain the

budget of vorticity dynamics and to shed further insight into this mechanism

underlying the evolution of dynomic stall vortex just stated and its

relation to unsteady separation. Based on the existing results of a video

presentation of the numerically simulated evolution, convection and shedding
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of the dynamic stall vortex is created, but for quantitative information

comprehensive data is needed. It should be added that, in the earlier

results for flow past a static Joukowski airfoil at 53°, the authors have

seen the formation of a secondary counterclockwise vortex before the leading

edge shear layer forms a large clockwise spinning vortex.
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FIG. 2

MANEUVERING THETA -- 0.000 DEG CL • 0.3732

RE ,, 10000.0 THTADOT ,, 0.000 CO., 0.045g

TIME - 8.000 THTADD - 1.840 CM= -0.1474

NACA0 015 VORTICITY MAX = 474.34 MIN - -474.54

ROUND TE INC BY 8.00 TO 80.00 THEN BY 200.00

t I

-0.50

I l I I I ,,f. I I

-0.25 0.00 0.25 0.50 0.75 t .00 1.25 1.50 1.75

X

VORTICITY CONTOURS FOR FLOW PAST A NACA0015 AIRFOIL,

Re = 10,000, _ = 0 °, t = 8.00.

MANEUVERING

R E = 10000,0

TIME --- 9.300

THETA -- 13,651

THTADOT = 0.200

THTADD = 0.000

NACA0 015

ROUND TE

VORTICITY MAX --" 729.22

INCBY 8.00 TO 80.00

DEG C L --- 3.1485

CD= 0.3413

CM= -0.4151

MIN ,,, -2263.13

THEN BY 200.00

FIG. 2 CONT. ENLARGED VIEW OF LEADING EDGE DEPICTING EVOLUTION OF

DYNAMIC STALL, Re = 10,000, _ = 13.651 °.
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INERTIAL VS BODY FIXED OBSERVER

%

%

,a Inertial Observer

Body Fixed

Generalized

Position of Fluid Particle:

Velocity of Fluid Particle:

Acceleration:

Vorticity:

Inertial Observer

fI

_t

Body Fixed Observer

(Apparent)

_=Vxff

KINEMATICS

% = _B/_(t)+ f/+ f_B(t)x

a_= aB/,(t) + a + 2f_B(t)x f/+ c_8(t)x _+ f_(t) x _B(t) x

,;.,, = v x {f'B/,(t)+ _ + fiB(t) x ,_}
= o+v x f'+2f_B(t)

= ,_+ 2fiB(t)

Arbitrary Maneuver Defined by: _8/,(t)
f'B/,(O -- dt

5,B(t) = dt
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UNSTEADY INCOMPRESSIBLE

NAVIER-STOKES EQUATIONS

INERTIAL OBSERVER

PRIMITIVE VARIABLES

Continuity

Linear Momentum (Bernoulli's Form)

0--7+ x
=-V

VELOCITY-VORTICITY

Continuity

V. 17z = 0

Kinematic Definition of Vorticity

Vx g1=_

Vorticity Transport

Ocoi 1

_,)++ v × (_, × (v0--7 x V x &1) = 0
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UNSTEADY INCOMPRESSIBLE

NAVIER-STOKES EQUATIONS

BODY FIXED (APPARENT) OBSERVER

PRIMITIVE VARIABLES

Continuity
V.12=O

Linear Momentum (Bernoulli's Form)

- 1 (V V x _')=T°_+ _(t) ×_+ (v ×_) ×_'+2a_tt)×v +_ ×

+ aB/i(t). 5 - 2

VELOCITY-VORTICITY

Continuity
V. ITl = 0

Kinematic Definition of Vorticity

Vx%=@

Vorticity Transport

1

0_,0_7 v) ++ v x (_ x (v x v x _) = o

Kinematic Relationship Between Apparent and Inertial Velocity

Solve For Inertial Velocity and Inertial Vorticity

Directly in Body Fixed Frame

Form of Governing Eqs. Unaltered

2
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Inertial Velocity Boundary Conditions Remain Unaltered

Only Differences Are

• Inertial Vorticity Advects with Apparent Velocity

Additional Vorticity is Created at Body Surface Due

to Acceleration of Body
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For Two-Dimensional Flow, use

DISTURBANCE STREAM FUNCTION-VORTICITY

FORMULATION IN GENERALIZED BODY FIXED

COORDINATES

Definition of Disturbance Stream Function (Deviation from Uniform

Flow)

Where tgo is at yet an Unknown Integration Constant Representing

a Displacement of the ZERO STREAMLINE at INFINITY

Arbitrarily Maneuvering

¢.¢_Rr_aL = [x_cos 0(t) - x1sine(t) + ._o]+ ¢fzS(_l._. t)
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ELLIPTIC STREAM FUNCTION PROBLEM

Subject to the Boundary Conditions

cDrS = 0 at INFINITY

cDIS -. {x_[V_/i(t)_cos6(t)]_xl[Vg/l(t)_sin 0(t)]

Along Body Surface

aB(t) }
2

d2I. =y

o

q2o
4,

_IDIS -- 0

at INFINITY

y

J

STRICTLY AN INVISCID EFFECT (ALL VISCOUS

DISTURBANCES DISSIPATE WELL BEFORE INFINITY)

DIRECTLY REPRESENTS UNDERLYING INVISCID

CIRCULATION SET BY AN INVISCID KUTTA CONDITION AT
TRAILING EDGE
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KUTTA CONDITION FOR @o

(WEDGE TRAILING EDGE)

/_; col

"_'S'OOtO_

_ Branch_ _ - _ Cut

O,,hDIS
1 '_INVrSCID } =lim {

BRANCH CUT

[{coso(t)- v_/,(t) + X_B(t)}_l + {sin0(0 - V}_.(t)- x_aB(t)}_]- i
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VORTICITY TRANSPORT

0 0

R--;{_r --0f' ) + _-_ 0d )

where

v_V1 [{cos0(t) - V_H(t ) + x_f2B(t)}_l + {sin0(t) - Vz_/t(t ) - xlf2B(t)}_2], el 0¢_ Is
= gn/v_ 4 0_2

v/gV 2 [{cos0(t) - V_lt(t ) + z2f_8(t)}_l + {sin0(t) - VJ/1(t ) - XlaB(t)}_]. _2 OCntts
= g22/v'_ _" O_

Subject to the Boundary Condition

w_ = 0 at Infinity

and Along the Body

-,z,4=_ k-_ _-] +_ k,z o-g--/
Subject to the Constraint

fill 0¢ D/'S

v_ O( 2 -[{c°sO(t)--gB/l(t)+z2f_B(t)}_l+{sinO(t)--lZg/1(t)--:r'l_B(t)}_2]'_
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THE PITCH UP MANEUVER OF

VISBAL AND SHANG

I

!

L.

_B/,(t) = o

(/_/,(t) = o

aB/t(t) = o

to 1- -(_o6)t)]OB(t) -- fro It -- (_-.-.-._)( exp

ftB(t) = -flo (1-exp-(@o )t )

as(t) = -(4t@)f_o exp -(_)t

Where

f_o - Nondimensional Pitch Rate; 0.2

to - Nondimensional Acceleration Time; 0.5

:co - Pivot Axis Location Measured from Airfoil LE; 0.25
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